Math, asked by Vibaksingh9054, 9 months ago

Proof that ( sin4 theta - cos4 theta +1) cosec 2 theta =2

Answers

Answered by arsh122100
1

Step-by-step explanation:

In △ABC AB=AC

⇒∠B=∠C (Angles opposite to equal sides are equal)

Now using angle sum property

∠A+∠B+∠C=180

⇒80

+∠C+∠C=180

⇒2∠C=180

−80

⇒∠C=

2

100

=50

now ∠C+∠x=180

(Angles made on straight line (AC) are supplementary)

⇒50

+∠x=180

⇒∠x=180

−50

=130

Answered by ashishks1912
2

The equation (sin^4\theta-cos^4\theta+1)cosec^2\theta=2 is proved

Step-by-step explanation:

Given that (sin^4\theta-cos^4\theta+1)cosec^2\theta=2

To prove the equality :

That is to prove that LHS=RHS

Now taking LHS

(sin^4\theta-cos^4\theta+1)cosec^2\theta

  • =sin^4\theta (cosec^2\theta)-cos^4\theta (cosec^2\theta)+1(cosec^2\theta) ( applying the distributive property a(x+y+z)=ax+ay+az )
  • =sin^4\theta (\frac{1}{sin^2\theta})-cos^4\theta \frac{1}{sin^2\theta}+\frac{1}{sin^2\theta} ( by using the identity cosec^2x=\frac{1}{sin^2x} )
  • =\frac{sin^4\theta-cos^4\theta+1}{sin^2\theta}
  • =\frac{sin^4\theta+1-cos^4\theta}{sin^2\theta}
  • =\frac{sin^4\theta+[(1^2)^2-(cos^2\theta)^2}{sin^2\theta}
  • =\frac{sin^4\theta+[1^2-cos^2\theta][1^2+cos^2\theta]}{sin^2\theta} (by using the identity a^2-b^2=(a+b)(a-b) )
  • =\frac{sin^4\theta+[1-cos^2\theta][1+cos^2\theta]}{sin^2\theta}
  • =\frac{sin^4\theta+[sin^2\theta][1+cos^2\theta]}{sin^2\theta} ( here by using the identity 1-cos^2\theta=sin^2\theta )
  • =\frac{sin^4\theta}{sin^2\theta}+\frac{[sin^2\theta][1+cos^2\theta]}{sin^2\theta}
  • =sin^2\theta+1+cos^2\theta
  • =1+1 ( by using the identity sin^2x+cos^2x=1 )
  • =2 =RHS
  • Hence we get that LHS=RHS

Hence the equation (sin^4\theta-cos^4\theta+1)cosec^2\theta=2 is proved

Similar questions