Physics, asked by sudips196, 11 months ago

proof that.
s =ut +   \frac{1}{2} a {t}^{2}

Answers

Answered by shadowsabers03
1

\longrightarrow\sf{\dfrac {dv}{dt}=a}

\longrightarrow\sf{dv=a\ dt}

\displaystyle\longrightarrow\sf{\int\limits_u^vdv=\int\limits_0^ta\ dt}

\longrightarrow\sf{\left [v\right]_u^v=a\left [t\right]_0^t}

\longrightarrow\sf{v-u=at}

\longrightarrow\sf{v=u+at}

\longrightarrow\sf{\dfrac{ds}{dt}=u+at}

\longrightarrow\sf{ds=(u+at)\ dt}

\displaystyle\longrightarrow\sf{\int\limits_0^sds=\int\limits_0^t(u+at)\ dt}

\longrightarrow\sf{\left [s\right]_0^s=u\left [t\right]_0^t+a\left [\dfrac {t^2}{2}\right]_0^t}

\longrightarrow\sf{\underline {\underline {s=ut+\dfrac {1}{2}at^2}}}

Answered by Anonymous
0

\huge{\bold{Heya\: Dost }}

_____________❤

 2nd Equation of Motion

~ S=ut+1/2 at² It 2nd is equation of motion.

Here,

S = Displacement

u = initial velocity

t = time

a = acceleration

Attachments:
Similar questions