Math, asked by pasayatanurag, 30 days ago

proof the following.

Attachments:

Answers

Answered by Anonymous
6

 \sf \underline{Solution  : -  }

    \sf{:  \implies( \tan \theta +  \cot \theta + 1)(\tan \theta +  \cot \theta  -  1) =  \sec ^{2}  \theta +  { \cot}^{2}  \theta}

» Consider LHS

    \sf{:  \implies \big[ ( \tan \theta +  \cot \theta) +  1 \big] \big[(\tan \theta +  \cot \theta  )-  1 \big]}

» Apply formula (A+B)(A-B)=A²-B²

    \sf{:  \implies \big[(\tan \theta +  \cot \theta  )^{2} -  1 \big]}

» Apply formula (A+B)²=A²+B²+2AB

    \sf{:  \implies (\tan^{2} \theta +  \cot ^{2}   + 2 \tan \theta.\cot  \theta-  1) }

» Apply formula tan θ . cot θ = 1

    \sf{:  \implies (\tan^{2} \theta +  \cot ^{2}   + 2(1) -  1) }

    \sf{:  \implies (\tan^{2} \theta +  \cot ^{2}   + 2-  1) }

    \sf{:  \implies (\tan^{2} \theta +  \cot ^{2}   + 1) }

» Apply formula tan² θ + 1 = sec² θ

 \purple{    \sf{:  \implies (\sec^{2} \theta +  \cot ^{2}\theta   ) }}

LHS = RHS

Hence proved

Similar questions