Math, asked by ltzNeha, 10 months ago

Proof this theorem
If A and B are square matrices of the same order then-
(A+B)^2=A^2+AB+BA+B^2.
Also when AB=BA then (A+B)^2=A^2+2AB+B^2​

Answers

Answered by Anonymous
39

 \huge \mathtt { \purple{SOLUTION:-}}

Let A and B be n-rowed square matrices.

Then, clearly,(A+B) is a square matrix of order n.

So, \large(a + b)  ^{2} is defined

Now,

(a + b) ^{2}  = (a + b).(a + b)

 \implies {a.(a + b) + b.(a + b)}

 \implies{aa + ab + ba + bb}

 \implies{ {a}^{2}  + ab + ba +  {b}^{2} }

Hence,

 \implies{ ( {a + b)}^{2}  = ( {a}^{2}  + ab + ba +  {b}^{2}) }

Particular case-

When AB=BA

In this case,we have

 \implies(a + b) ^{2}  = ( {a}^{2}  + ab + ab +  {b}^{2} )

 \implies{ ({ a}^{2}  + 2ab +  {b}^{2} )}

[Hence BA= AB]

 \large{ \mathtt{ \pink{Hence  \: proved}}}

Answered by BrainlyPopularman
6

{ \bold{ \boxed{ \boxed{ \red{ \mathtt{ \bigstar \: solution \:  \bigstar}}}}}}

{ \bold  { \orange{ \mathtt{Let  \:  \: A  \: \:  and  \:  \: B \:  \:  be  \:  \: n-rowed \:  \:  square  \:  \: matrices.}}}} \\  \\ </p><p>{ \bold  { \orange{ \mathtt{</p><p>Then,  \:  \: clearly \:  \: ,(A+B) \:  \:  is \:  \:  a  \:  \: square \:  \:  matrix \:  \:  of \:  \:  order  \:  \: n.}}}} \\  \\ { \bold  { \orange{ \mathtt{so \:  \: A + B \:  \: defined \:  \: as -   }}}} \\  \\ { \bold{ \orange{ \mathtt{  \implies{(A + B) }^{2}  =  (A + B)(A + B)}}}} \\  \\ { \bold{ \orange{ \mathtt{   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = {A}^{2} + AB +  BA +  {B}^{2}  }}}} \\  \\ { \bold{ \blue{ \mathtt{but \:AB= BA \:, \: so \:  \: that - }}}} \\  \\ { \bold{ \boxed{ \orange{ \mathtt{ {(A+B)}^{2}  =  {A}^{2} +  2 AB + {B}^{2}  }}}}} \\  \\ { \bold{ \boxed{ \red { \huge{ \mathtt{ Hence  \:  \: Proved  }}}}}}

Similar questions