proove karo point lelo n

Answers
prefer the attachment

Answer:
\large\underline{\sf{Given- }}
Given−
\rm :\longmapsto\:n = 2 + \sqrt{3} :⟼n=2+
3
\large\underline{\sf{To\:Find - }}
ToFind−
\rm :\longmapsto\: {\bigg(n + \dfrac{1}{n} \bigg) }^{3} :⟼(n+
n
1
)
3
\large\underline{\sf{Solution-}}
Solution−
Given that
\rm :\longmapsto\:n = 2 + \sqrt{3} :⟼n=2+
3
Consider,
\bf :\longmapsto\:\dfrac{1}{n} :⟼
n
1
\rm \: = \: \:\dfrac{1}{2 + \sqrt{3} } =
2+
3
1
On rationalizing the denominator, we get
\rm \: = \: \:\dfrac{1}{2 + \sqrt{3} } \times \dfrac{2 - \sqrt{3} }{2 - \sqrt{3} } =
2+
3
1
×
2−
3
2−
3
\rm \: = \: \:\dfrac{2 - \sqrt{3} }{ {2}^{2} - {( \sqrt{3}) }^{2} } =
2
2
−(
3
)
2
2−
3
\: \: \: \: \: \: \red{\bigg \{ \because \:(x + y)(x - y) = {x}^{2} - {y}^{2} \bigg \}}{∵(x+y)(x−y)=x
2
−y
2
}
\rm \: = \: \:\dfrac{2 - \sqrt{3} }{4 - 3} =
4−3
2−
3
\rm \: = \: \:\dfrac{2 - \sqrt{3} }{1} =
1
2−
3
\rm \: = \: \:2 - \sqrt{3} =2−
3
\bf :\longmapsto\:\dfrac{1}{n} = 2 - \sqrt{3} :⟼
n
1
=2−
3
So,
\rm :\longmapsto\: \bigg(n + \dfrac{1}{n} \bigg)^{3} :⟼(n+
n
1
)
3
\rm \: = \: \: {\bigg(2 + \sqrt{3} + 2 - \sqrt{3} \bigg) }^{3} =(2+
3
+2−
3
)
3
\rm \: = \: \: {4}^{3} =4
3
\rm \: = \: \:64=64
Hence,
\bf :\longmapsto\: \bigg(n + \dfrac{1}{n} \bigg)^{3} = 64:⟼(n+
n
1
)
3
=64
Additional Information :-
More Identities to know:
↝(a + b)² = a² + 2ab + b²
↝(a - b)² = a² - 2ab + b²
↝a² - b² = (a + b)(a - b)
↝(a + b)² = (a - b)² + 4ab
↝(a - b)² = (a + b)² - 4ab
↝(a + b)² + (a - b)² = 2(a² + b²)
↝(a + b)³ = a³ + b³ + 3ab(a + b)
↝(a - b)³ = a³ - b³ - 3ab(a - b)