proove sinQ-2sin^2Q@÷2cos^2Q-cosQ=tanQ
Answers
Answer:
tanθ
Step-by-step explanation:
To prove--->There is a mistake in
-------------- question
Sinθ-2Sin³θ
---------------------- = tan θ
2Cos³θ-Cosθ
Solution--->
-------------
We know that, Sin²θ+Cos²θ=1
Shifting Cos²θ to RHS we get
=> Sin²θ=1-Cos²θ
Shifting Sin²θ to RHS we get
=> Cos²θ=1-Sin²θ
Now taking LHS of the given question
Sinθ - 2Sin³θ
L.H.S.=------------------------
2Cos³θ-Cosθ
Sinθ(1-2Sin²θ)
= ---------------------------
Cosθ(2Cos²θ-1)
Sinθ {1-2(1-Cos²θ)}
= ----------------------------------
Cosθ(2Cos²θ-1)
Sinθ (1-2+2Cos²θ)
=---------------------------------
Cosθ(2Cos²θ-1)
Sinθ (2Cos²θ-1)
= ------------------------------
Cosθ (2Cos²θ-1)
2Cos²θ-1 cancel out from numerator and denominator
Sinθ
= ---------
Cosθ
=tanθ =R.H.S.