Proove that 1/2+root3+2/root5-root3+1/2-root5=0
Answers
Answered by
2
L. H. S
1/(2 + √3) + 2 / (√5 - √3) + 1 / (2 - √5)
= (2 - √3) / [(2 + √3)(2 - √3)] + 2(√5 + √3) / [(√5 - √3)(√5 + √3)] + (2 + √5) / [(2 - √5)(2 + √5)]
= (2 - √3) / (4 - 3) + (2√5 + 2√3) / (5 - 3) + (2 + √5) / (4 - 5)
= [(2 - √3) / 1] + [2(√5 + √3) / 2] + [(2 + √5) / -1]
= 2 - √3 + √5 + √3 - 2 - √5
= 0
= RHS
LHS = RHS
Hence Proved!
Similar questions