Math, asked by nithinanand72, 1 year ago

PROOVE THAT 1/COSEC A - COT A - 1/SINA = 1/SIN A - 1/COSECA+COTA

Answers

Answered by Anonymous
0

Step-by-step explanation:

1/(cosecA-cotA) -1/sinA

=(Cosec^2A-cot^2A)/(cosecA-cotA)-cosecA .  (As cosec^2A-cot^2A=1)

=(CosecA+cotA)-cosecA

=CosecA-(CosecA-cotA)

=1/sinA-(cosecA-cotA)(cosecA+cotA)/(cosecA+cotA)

=1/sinA-(cosec^2A-cot^2A)/(cosecA+cotA)

=1/sinA-1/(cosecA+cotA)=RHS. Proved

Answered by nikolatesla2
0

Answer:

Step-by-step explanation:

LHS=1/(cosecA-cotA) -1/sinA

=(cosecA+cotA)/cosec^2A-cot^2A) -cosecA

=cosecA+cotA-cosecA

=cotA

RHS=1/sinA-1/(cosecA+cotA)

=cosecA-(cosecA-cotA)/(cosec^2A-cot^2A)

=cosecA-(cosecA-cotA)

=cotA

LHS=RHS

Thanks & Regards

Similar questions