Proove that:- 1 + sin tita / 1 - sin tita = (sec tita + tan tita )²
Please answer as soon as possible
Answers
Answered by
0
Step-by-step explanation:
Solving RHS
(sec theta + tan theta )²
= sec²theta + 2 × sec theta × tan theta + tan² theta
= 1/cos² theta + 2× (1/cos theta )× (sin theta / cos theta ) + sin² theta / cos² theta
= 1/cos²theta + 2sin theta / cos²theta + sin²theta / cos²theta
= (1+2sintheta + sin²theta )/cos²theta
=( 1 + sintheta )²/(1 - sin²theta )
By using algebraic formulae , we get ,
(1+sintheta ) ( 1+sintheta ) / (1 - sintheta )(1+ sintheta)
= (1+ sintheta )/ (1 - sin theta )
Similar questions