Math, asked by manjugautam0385, 2 months ago

Proove that (1 + tan 0)2 + (1 + coto) =(seco + coseco )2​

Answers

Answered by mathdude500
2

Appropriate Question

Prove that

\sf \:  {(1 +  tan x)}^{2} +  {(1 + cotx)}^{2}  = (secx + cosecx)^{2}

Identities Used :-

\boxed{\bf\:  {sec}^{2}x = 1 +  {tan}^{2}x}

\boxed{\bf\:{cosec}^{2}x = 1 +  {cot}^{2}x}

\boxed{\bf\: tanx = \dfrac{sinx}{cosx}}

\boxed{\bf\: cotx = \dfrac{cosx}{sinx}}

\boxed{\bf\:secx = \dfrac{1}{cosx}}

\boxed{\bf\:cosecx = \dfrac{1}{sinx}}

\boxed{\bf\:  {sin}^{2}x +  {cos}^{2}x = 1}

\large\underline{\bf{Solution-}}

Consider,

\rm :\longmapsto\: {(1 +  tan x)}^{2} +  {(1 + cotx)}^{2}

\sf \:  =  \: 1 +  { tan }^{2}x + 2 tan x + 1 +  {cot}^{2}x + 2cotx

\sf \:  =  \: (1 +  { tan }^{2}x) + 2 tan x + (1 +  {cot}^{2}x)+ 2cotx

\sf \:  =  \:  {sec}^{2}x +  {cosec}^{2}x + 2( tanx + cotx)

\sf \:  =  \:  {sec}^{2}x +  {cosec}^{2}x + 2\bigg(\dfrac{sinx}{cosx}  + \dfrac{cosx}{sinx} \bigg)

\sf \:  =  \:  {sec}^{2}x +  {cosec}^{2}x + 2\bigg(\dfrac{ {sin}^{2}x +  {cos}^{2}x}{sinx \: cosx}\bigg)

\sf \:  =  \:  {sec}^{2}x +  {cosec}^{2}x + 2\bigg(\dfrac{1}{sinx \: cosx}\bigg)

\sf \:  =  \:  {sec}^{2}x +  {cosec}^{2}x + 2secx \: cosecx

\sf \:  =  \:  {(secx + cosecx)}^{2}

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions