Math, asked by suhani01112, 1 year ago

proove that 2^x-1+2^x/2^x+1-2^x=3/2

Answers

Answered by MarkAsBrainliest
1
Answer :

Now,

L.H.S. = {2^(x - 1) + 2^x} / {2^(x + 1) - 2^x}

= [{2^x × 2^(-1)} + 2^x]/[{2^x × 2^(1)} - 2^x]

= {2^x (1/2 + 1)}/{2^x (2 - 1)}

= (3/2)/1

= 3/2

= R.H.S. [Proved]

#MarkAsBrainliest

suhani01112: thnxx yrr...
Answered by Robin0071
0
solution:-

given by:-

 \frac{ {2}^{x - 1} +  {2}^{x}  }{ {2}^{x + 1}  -  {2}^{x} }  =  \frac{3}{2}  \\  \frac{ {2}^{x}( {2}^{ - 1}  + 1) }{ {2}^{x} ( {2}^{1}   - 1)}  =  \frac{3}{2}  \\  \frac{ \frac{1}{2}  + 1}{1}  =  \frac{3}{2}  \\  \frac{1 + 2}{2}  =  \frac{3}{2}  \\  \frac{3}{2}  =  \frac{3}{2}  \\( lhs = rhs)proved
Similar questions