Math, asked by yogeshtharu, 6 days ago

proove that:-

a) sin (A – B) / cos A cos B = tan A – tan B



Answers

Answered by mathdude500
7

Question :-

Prove that

\rm \: \dfrac{sin(A - B)}{cosAcosB}  = tanA - tanB \\

\large\underline{\sf{Solution-}}

Consider LHS

\rm \: \dfrac{sin(A - B)}{cosAcosB}  \\

We know,

\boxed{\sf{  \:sin(x - y) = sinx \: cosy \:   - \: siny \: cosx \: }} \\

So, using this identity, we get

\rm \: =  \: \dfrac{sinA \: cosB \:  -  \: sinB \: cosA}{cosA \: cosB}  \\

\rm \: =  \: \dfrac{sinA \: cosB}{cosA \: cosB}   \:  -  \: \dfrac{sinB \: cosA}{cosA \: cosB} \\

\rm \: =  \: \dfrac{sinA}{cosA}  \:  -  \: \dfrac{sinB}{cosB}  \\

\rm \: =  \: tanA - tanB \\

Hence,

\rm\implies \:\boxed{\rm{  \: \frac{sin(A - B)}{cosA \: cosB} \rm \: =  \: tanA - tanB \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\sf{  \:sin(x + y) = sinx \: cosy \:  +  \: siny \: cosx \: }} \\

\boxed{\sf{  \:cos(x + y) = cosx \: cosy - siny \: sinx \: }} \\

\boxed{\sf{  \:cos(x  -  y) = cosx \: cosy  +  siny \: sinx \: }} \\

\boxed{\sf{  \:tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany}  \: }} \\

\boxed{\sf{  \:tan(x - y) =  \frac{tanx  -  tany}{1  +  tanx \: tany}  \: }} \\

\boxed{\sf{  \: {sin}^{2}x -  {sin}^{2}y = sin(x + y) \: sin(x - y) \: }} \\

\boxed{\sf{  \: {cos}^{2}x -  {sin}^{2}y = cos(x + y) \: cos(x - y) \: }} \\

Answered by Anonymous
21

Step-by-step explanation:

 \boxed{\displaystyle{ \sin{{\left({x}-{y}\right)}}}={\sin{{x}}}{\cos{{y}}}-{\cos{{x}}}{\sin{{y}}})} \\ \\  \frac{\sin(a-b)}{\cos a\cos b}  =\frac{\sin a\cos b-\cos a\sin b}{\cos a\cos b}\\ \\\bf \:Separate \:  as:\\  (\frac{\sin(a-b)}{\cos a\cos b} ) =\left( \: \frac{\sin a\cos b}{\cos a\cos b}\right)-\left(\frac{\cos a\sin b}{\cos a\cos b}\right)\\  \\  \bf \: Cancel  \: common  \: factors: \\   \frac{\sin(a-b)}{\cos a\cos b}  =\left(\frac{\sin a}{cos a}\right)-\left(\frac{\sin b}{\cos b}\right)\\  \\  \bf \: Use \:  the  \: quotient  \: identity: \\ (\displaystyle{\tan{{x}}}=(\frac{{\sin{{x}}}}{{\cos{{x}}}}) \\  \boxed{ \red{\frac{  \: \sin(a-b)}{ \cos a\cos b}= \tan a-\tan b}}

Similar questions