Math, asked by 4929, 1 month ago

Proove that
cosec A + 2 cosec 2A = sec A cot (A/2)
please answer fast i will mark it as brainliest if correct ​

Answers

Answered by TYKE
5

Question :

Proove that cosec A + 2 cosec 2A = sec A cot (A/2)

Solution :

 \sf \small cosec  \: A + 2 cosec  \:2 A = sec \:  A  \: cot  \frac{A}{2}

 \sf \small \frac{1}{sin \: A}  +  \frac{2}{sin \: 2A}  =  \frac{1}{sin \: A}  +  \frac{2}{2 \: sin \: A \: cos \: A}

 \sf  \frac{cos \:A + 1 }{sin \: A \: cos \:A }  = \frac{2 \:  {cos}^{2} \:  \frac{A}{2}  }{2 \: sin \:  \frac{A}{2}  \: cos \:  \frac{A}{2}  cos \: A}

 \sf  \small \: cosec  \: A + 2  \: cosec  \: 2 \: A = sec  \: A  \: cot  \: A

HENCE PROVED ✓✓

Answered by RROBROY
0

Answer:

L.H.S. =sec

2

A+cosec

2

A

cos

2

A

1

+

sin

2

A

1

sin

2

Acos

2

A

sin

2

A+cos

2

A

sin

2

Acos

2

A

1

⇒cosec

2

Asec

2

A= R.H.S.

Similar questions
Math, 8 months ago