Proove that
Given tan ( πcos¢ ) = cot ( π sin¢) then Proove that cos ( ¢ - π/4 ) = +-1/2√2
Answers
Answered by
7
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Attachments:
khusbu55:
Thanks
Answered by
2
tan(πcosθ)=cot(πsinθ)tan(πcosθ)=cot(πsinθ)
⇒tan(πcosθ)=tan{π2−(πsinθ)}⇒tan(πcosθ)=tan{π2−(πsinθ)}
⇒πcosθ=π2−(πsinθ)⇒πcosθ=π2−(πsinθ)
⇒12=12√[sinπ4cosθ+cosπ4sinθ]⇒12=12[sinπ4cosθ+cosπ4sinθ]
⇒12√=sin(π4+θ)⇒12=sin(π4+θ) ⇒π4=π4+θ⇒π4=π4+θ
⇒θ=0⇒θ=0
=
∴cos(θ−π4)∴cos(θ−π4) == 12√12
⇒12=2–√[sinπ4cosθ+cosπ4sinθ]⇒12=2[sinπ4cosθ+cosπ4sinθ]. –
I hope it help you
mark me brainliest
don't forget to follow me
⇒tan(πcosθ)=tan{π2−(πsinθ)}⇒tan(πcosθ)=tan{π2−(πsinθ)}
⇒πcosθ=π2−(πsinθ)⇒πcosθ=π2−(πsinθ)
⇒12=12√[sinπ4cosθ+cosπ4sinθ]⇒12=12[sinπ4cosθ+cosπ4sinθ]
⇒12√=sin(π4+θ)⇒12=sin(π4+θ) ⇒π4=π4+θ⇒π4=π4+θ
⇒θ=0⇒θ=0
=
∴cos(θ−π4)∴cos(θ−π4) == 12√12
⇒12=2–√[sinπ4cosθ+cosπ4sinθ]⇒12=2[sinπ4cosθ+cosπ4sinθ]. –
I hope it help you
mark me brainliest
don't forget to follow me
Similar questions