Math, asked by khusbu55, 1 year ago

Proove that

Given tan ( πcos¢ ) = cot ( π sin¢) then Proove that cos ( ¢ - π/4 ) = +-1/2√2

Answers

Answered by TheLifeRacer
7
 \bold\pink{Hey !!! \: }

 \underline\gray{solution \: is \: in \: the \: given \: attachment \: }

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

\boxed{hope \: this \: helps}

 \huge \orange{Rajukumar111}
Attachments:

khusbu55: Thanks
Answered by aman3495
2
tan(πcosθ)=cot(πsinθ)tan⁡(πcos⁡θ)=cot⁡(πsin⁡θ)

⇒tan(πcosθ)=tan{π2−(πsinθ)}⇒tan⁡(πcos⁡θ)=tan⁡{π2−(πsin⁡θ)}
⇒πcosθ=π2−(πsinθ)⇒πcos⁡θ=π2−(πsin⁡θ)
⇒12=12√[sinπ4cosθ+cosπ4sinθ]⇒12=12[sin⁡π4cos⁡θ+cos⁡π4sin⁡θ]
⇒12√=sin(π4+θ)⇒12=sin⁡(π4+θ) ⇒π4=π4+θ⇒π4=π4+θ
⇒θ=0⇒θ=0
=
∴cos(θ−π4)∴cos⁡(θ−π4) == 12√12

⇒12=2–√[sinπ4cosθ+cosπ4sinθ]⇒12=2[sinπ4cosθ+cosπ4sinθ]. –


I hope it help you
mark me brainliest
don't forget to follow me

khusbu55: This is wrong
Similar questions