Math, asked by KuttyArjun, 7 months ago

Proove that root 2 is irrational ​

Answers

Answered by goudbannu654
0

Answer:

ANSWER

Let us assume on the contrary that root2 is a rational number. Then, there exist positive integers a and bsuch that

root2=ba where, a and b, are co-prime i.e. their HCFis 1

⇒(root2)2=(ba)2 

⇒2=b2a2

⇒2b2=a2 

⇒2∣a2[∵2∣2b2 and 2b2=a2] 

⇒2∣a...(i) 

⇒a=2c for some integer c

⇒a2=4c2 

⇒2b2=4c2[∵2b2=a2] 

⇒b2=2c2 

⇒2∣b2

Similar questions