proove that sin theta + cos theta÷ sin theta - cos theta÷ sin theta+cos theta= 2/2(sin²-1)
Answers
Answered by
0
Answer:
(sinA + 2cosA)^2+(2sinA - cos A)^2
=Sin^2(A)+2.sinA.2cosA+4cos^2(A)+4sin^A-2.2sinA.cosA+cos^2(A)
=5sin^2(A)+5cos^2(A)
=5*{sin^2(A)+cos^2(A)}
=5..
Now,
(sinA+2cosA)^2+(2cosA-sinA)^2=5
Or,1+(2cosA-sinA)^2=5
Or, (2cosA-sinA)^2=5–1=4.
Or, 2cosA-sinA=√4=±2
Or, 2cosA-sinA=±2 (proved).
Answered by
5
Answer:
Step-by-step explanation:
sin ϴ + 2 cos ϴ = 1
Squaring both the sides
(sin ϴ + 2 cos ϴ) ² = (1) ²
sin² ϴ + 4 cos² ϴ + 4 sin ϴ cos ϴ = 1
because sin² ϴ = 1 - cos² ϴ & cos² ϴ=1- sin² ϴ
So replacing sin² ϴ by 1 - cos² ϴ and cos² ϴ by 1- sin² ϴ
we get
1 - cos² ϴ + 4 ( 1 - sin² ϴ ) + 4sin ϴ cos ϴ = 1
1 - cos² ϴ + 4 – 4sin² ϴ + 4 sin ϴ cos ϴ = 1
5 – 1 = cos² ϴ +4sin² ϴ - 4 sin ϴ cos ϴ
or
( cos ϴ – 2 sin ϴ ) ² = 4
cos ϴ -2sin ϴ = ± 2
Similar questions