Math, asked by Walter18, 9 days ago

Proove that:-
tan A/(1+cot A) = tan A - 1 / (2- cosec^2A)​

Attachments:

Answers

Answered by MysticSohamS
6

Answer:

hey here is your answer

pls mark it as brainliest

Step-by-step explanation:

so \: here \: given \: trigonometric \: equation \: is \:  \tan \: theta \div 1 +  \cot \:  theta = tan \: theta - 1 \div 2 - cosec \: square \: theta

let \: lhs = tan \: theta \div 1+cot  \:  theta \\ rhs = tan \: theta - 1 \div 2 - cosec \: square \: theta

so \: considering \: lhs \: first \\ multiplying \: throughout \: by \: 1 - cot\: theta \\ we \: get \\ tan \: theta(1 - cot \: theta) \div (1 + cot \: theta)(1 - cot \: theta)

 = tan \: theta - cot \: theta.tan \: theta \div 1 - cot \: square \\  = tan \: theta - 1 \div 1 - (cosec \: square \: theta - 1) \\ since \: tan \: theta.cot \: theta = 1 \\ cot \: square \: theta = cosec \: square \: theta - 1

 = tan \: theta - 1 \div 1 + 1 - cosec \: square \: theta \\  = tan \: theta - 1 \div 2 - cosec \: square \: theta

hence \: lhs = rhs \\ thus \: proved

Similar questions