Math, asked by 8178858088, 1 year ago

proove that : tan9A - tan6A -tan3A = tan9A.tan 6A.tan tan 3A​

Answers

Answered by pulakmath007
20

SOLUTION

TO PROVE

\displaystyle \sf{ \tan 9A - \tan 6A  -  { \tan 3A}     =   \tan 9A \tan 6A  \tan 3A  }

FORMULA TO BE IMPLEMENTED

\displaystyle \sf{ \tan (A +  B) =  \frac{ \tan A  + \tan  B  \: }{1 -  \tan A  \tan  B  } }

PROOF

 \displaystyle \sf{ \tan 9A =  \tan( 3A +  6A)}

 \implies \displaystyle \sf{ \tan 9A =  \frac{ \tan 3A  +  \tan 6A }{1 -  \tan 3A  \tan 6A  } }

On Cross Multiplication we get

 \displaystyle \sf{ \tan 9A - \tan 9A  \tan 3A  \tan 6A   =  { \tan 3A  +  \tan 6A } }

 \implies \displaystyle \sf{ \tan 9A    =  { \tan 3A  +  \tan 6A }  + \tan 9A  \tan 3A  \tan 6A }

 \implies \displaystyle \sf{ \tan 9A - \tan 6A  -  { \tan 3A}     =   \tan 9A \tan 6A  \tan 3A  }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Prove that : tan (45+A)= sec2A + tan2A

https://brainly.in/question/25501012

Similar questions