Math, asked by nilanshbarotia, 2 months ago

proove that x+y=a+b.this question is from P.K. garg 9th standard unit 4 geometry (lines and angles) group c 76th question.

Attachments:

Answers

Answered by prince5132
60

CONCEPT USED :-

★ In this question the concept of Angle sum property of a quardilatetal and linear pair property has been used. So what is angle sum property of a quardilatetal ? So the angle sum property of a quardilatetal is , the sum of all interior angles of a quardilatetal is 360° . What is linear pair ? so the linear pair is a property in which the sum of all the angles lie in a straight line is 180°.

TO PROVE :-

  • x + y = a + b.

PROOF :-

By linear pair we have,

 \implies \sf \: y +  \angle PSR = 180^{ \circ}  \\

 \implies \sf \:\angle PSR =180^{ \circ} - y \: ...(1) \\

Similarly,

 \implies \sf \: x +  \angle PQR = 180^{ \circ}  \\

 \implies \sf \:  \angle PQR =  180^{ \circ}  - x \: ...(2) \\

Now by angle sum property we have,

\implies \sf \: \angle P + \angle PQR +\angle R +  \angle PSR = 360^{ \circ}  \\

\implies \sf \:b + 180^{ \circ} - y + a + 180^{ \circ} - y = 360 \\

\implies \sf \:b + a + 360 - x - y = 360 \\

\implies \sf \:a + b  - x - y = 360 - 360 \\

\implies \sf \:a + b - x - y = 0 \\

\implies \underline{ \boxed{ \sf \:a + b = x + y}}

Hence Proved !

Answered by Rudranil420
92

Answer:

Question :-

  • Prove that x + y = a + b

PROVE :-

  • x + y = a + b.

PROOF :-

{:}\implies \sf \: y +  \angle PSR = 180^{ \circ}  \\

{:}\implies \sf \:\angle PSR =180^{ \circ} - y \: ------(1) \\

Similarly,

{:}\implies \sf \: x +  \angle PQR = 180^{ \circ}  \\

{:}\implies \sf \:  \angle PQR =  180^{ \circ}  - x \: ------(2) \\

Now by using angle sum property we get,

{:}\implies \sf \: \angle P + \angle PQR +\angle R +  \angle PSR = 360^{ \circ}  \\

{:}\implies \sf \:b + 180^{ \circ} - y + a + 180^{ \circ} - y = 360^{ \circ} \\

{:}\implies \sf \:b + a + 360^{ \circ} - x - y = 360^{ \circ} \\

{:}\implies \sf \:a + b  - x - y = 360^{ \circ} - 360^{ \circ} \\

{:}\implies \sf \:a + b - x - y = 0 \\

{:}\implies \underline{ \boxed{ \sf \:a + b = x + y}}

{\underline{\boxed{\large{\mathscr{Hence\: Proved}}}}}

Similar questions