Math, asked by Anonymous, 1 year ago

PROOVE THIS TRIGONOMETRY!

Attachments:

shivam2213000: (rationalising)
√(1-cos)(1+cos)
√(1-cos)^2

=> √(1^2-cos^2)
√(1-cos)^2

=> √(sin^2)
1-cos

=>. sin
1-cos

Answers

Answered by Anonymous
0

hope it may help you.........

Attachments:
Answered by Anonymous
1

Question:

To Prove :

{\sf{ {\sqrt{ {\dfrac{1 - cos A}{1 + cos A}} }} = {\dfrac{sin A}{1 + cos A}} }}

Step-by-step explanation:

L.H.S. = {\sf{\ \ {\sqrt{ {\dfrac{1 - cos A}{1 + cos A}} }}}}

_____________________________

Multiplying and dividing with (1 + cos A).

\implies{\sf{ {\sqrt{ {\dfrac{1 - cos A}{1 + cos A}} \times {\dfrac{1 + cos A}{1 + cos A}} }} }}

_____________________________

\implies{\sf{ {\sqrt{ {\dfrac{(1 - cos A)(1 + cos A)}{(1 + cos A)^2}}}}}}

_____________________________

{\boxed{\tt{Identity \ : \ (a - b)(a + b) = a^2 - b^2}}}

{\tt{Here, \ a = 1, \ b = cos A}}

_____________________________

\implies{\sf{ {\sqrt{ {\dfrac{(1)^2 - (cos A)^2}{(1 + cos A)^2}} }}}}

_____________________________

\implies{\sf{ {\sqrt{ {\dfrac{1 - cos^2 A}{(1 + cos A)^2}}}}}}

_____________________________

{\boxed{\tt{Identity \ : \ sin^2 \theta + cos^2 \theta = 1}}}

{\tt{From \ this, \ we \ get \ [ 1 - cos^2 \theta = sin^2 \theta ] }}

_____________________________

\implies{\sf{ {\sqrt{ {\dfrac{sin^2 A}{(1 + cos A)^2}}}}}}

_____________________________

We can write this as :

\implies{\sf{ {\sqrt{ {\dfrac{(sin A)^2}{(1 + cos A)^2}}}}}}

_____________________________

\implies{\sf{ {\sqrt{ \left( {\dfrac{sin A}{1 + cos A}} \right) ^2 }}}}

_____________________________

\implies{\sf{ {\dfrac{sin A}{1 + cos A}}}}

_____________________________

= R.H.S.

Hence, proved !!

Similar questions