Math, asked by Anonymous, 1 month ago

Proper solved answer

Don't spam otherwise report ​​

Attachments:

Answers

Answered by sajan6491
20

 \displaystyle \bold \red{\color{red}{\int{\left(\tan{\left(x \right)} + 1\right) e^{x} \sec{\left(x \right)} d x}}}

  \displaystyle{\bold \red{=\color{red}{\left(\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \cdot \tan{\left(x \right)}-\int{\tan{\left(x \right)} \cdot 2 e^{x} \cos{\left(x \right)} d x}\right)}}}

 {\displaystyle \bold \red{=\color{red}{\left(\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - \int{2 e^{x} \cos{\left(x \right)} \tan{\left(x \right)} d x}\right)}}}

 {\displaystyle \bold \red{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - \color{red}{\int{2 e^{x} \cos{\left(x \right)} \tan{\left(x \right)} d x}} }}

{ \displaystyle \bold \red{= \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - \color{red}{\left(2 \int{e^{x} \cos{\left(x \right)} \tan{\left(x \right)} d x}\right)}}}

{ \displaystyle \bold \red{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - 2 \color{red}{\int{e^{x} \cos{\left(x \right)} \tan{\left(x \right)} d x}}}}

 {\displaystyle \bold \red{= \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - 2 \color{red}{\int{e^{x} \sin{\left(x \right)} d x}}}}

{ \displaystyle \bold \red{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - 2 \color{red}{\int{e^{x} \sin{\left(x \right)} d x}}}}

{ \displaystyle \bold \red{=\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - 2 \color{red}{\left(\sin{\left(x \right)} \cdot e^{x}-\int{e^{x} \cdot \cos{\left(x \right)} d x}\right)}}}

  \displaystyle{\bold \red{=\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - 2 \color{red}{\left(e^{x} \sin{\left(x \right)} - \int{e^{x} \cos{\left(x \right)} d x}\right)}}}

{ \displaystyle \bold \red{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - 2 e^{x} \sin{\left(x \right)} + 2 \color{red}{\int{e^{x} \cos{\left(x \right)} d x}}}}

{ \displaystyle \bold \red{=\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - 2 e^{x} \sin{\left(x \right)} + 2 \color{red}{\left(\cos{\left(x \right)} \cdot e^{x}-\int{e^{x} \cdot \left(- \sin{\left(x \right)}\right) d x}\right)}}}

{ \displaystyle{ \bold \red{=\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - 2 e^{x} \sin{\left(x \right)} + 2 \color{red}{\left(e^{x} \cos{\left(x \right)} - \int{\left(- e^{x} \sin{\left(x \right)}\right)d x}\right)}}}}

 {\displaystyle \bold \red{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - 2 e^{x} \sin{\left(x \right)} + 2 e^{x} \cos{\left(x \right)} - 2 \color{red}{\int{\left(- e^{x} \sin{\left(x \right)}\right)d x}}}}

{ \displaystyle \bold  \red{= \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - 2 e^{x} \sin{\left(x \right)} + 2 e^{x} \cos{\left(x \right)} - 2 \color{red}{\left(- \int{e^{x} \sin{\left(x \right)} d x}\right)}}}

{ \displaystyle{ \bold \red{ \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - 2 \int{e^{x} \sin{\left(x \right)} d x}}}}

 { \displaystyle{\bold \red{= \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - 2 e^{x} \sin{\left(x \right)} + 2 e^{x} \cos{\left(x \right)} + 2 \int{e^{x} \sin{\left(x \right)} d x}}}}

{ \displaystyle \bold \red{\int{e^{x} \sin{\left(x \right)} d x}}} \\  \bold \red{= \frac{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{x}}{2}}

 {\displaystyle \bold \red{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - 2 \color{red}{\int{e^{x} \sin{\left(x \right)} d x}}}}

 {\bold \red{= \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - 2 \color{red}{\left(\frac{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{x}}{2}\right)}}}

 {\displaystyle \bold \red{\int{\left(\tan{\left(x \right)} + 1\right) e^{x} \sec{\left(x \right)} d x} = - \left(\sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{x} + \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)}}}

 { \displaystyle \bold \red{\int{\left(\tan{\left(x \right)} + 1\right) e^{x} \sec{\left(x \right)} d x} = \frac{e^{x}}{\cos{\left(x \right)}}}}

 {\displaystyle \bold \red{\int{\left(\tan{\left(x \right)} + 1\right) e^{x} \sec{\left(x \right)} d x} = \frac{e^{x}}{\cos{\left(x \right)}}+C}}

Answered by OoAryanKingoO78
2

Answer:

 \displaystyle \bold \red{\color{red}{\int{\left(\tan{\left(x \right)} + 1\right) e^{x} \sec{\left(x \right)} d x}}}

  \displaystyle{\bold \red{=\color{red}{\left(\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \cdot \tan{\left(x \right)}-\int{\tan{\left(x \right)} \cdot 2 e^{x} \cos{\left(x \right)} d x}\right)}}}

 {\displaystyle \bold \red{=\color{red}{\left(\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - \int{2 e^{x} \cos{\left(x \right)} \tan{\left(x \right)} d x}\right)}}}

 {\displaystyle \bold \red{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - \color{red}{\int{2 e^{x} \cos{\left(x \right)} \tan{\left(x \right)} d x}} }}

{ \displaystyle \bold \red{= \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - \color{red}{\left(2 \int{e^{x} \cos{\left(x \right)} \tan{\left(x \right)} d x}\right)}}}

{ \displaystyle \bold \red{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - 2 \color{red}{\int{e^{x} \cos{\left(x \right)} \tan{\left(x \right)} d x}}}}

 {\displaystyle \bold \red{= \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - 2 \color{red}{\int{e^{x} \sin{\left(x \right)} d x}}}}

{ \displaystyle \bold \red{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - 2 \color{red}{\int{e^{x} \sin{\left(x \right)} d x}}}}

{ \displaystyle \bold \red{=\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - 2 \color{red}{\left(\sin{\left(x \right)} \cdot e^{x}-\int{e^{x} \cdot \cos{\left(x \right)} d x}\right)}}}

  \displaystyle{\bold \red{=\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - 2 \color{red}{\left(e^{x} \sin{\left(x \right)} - \int{e^{x} \cos{\left(x \right)} d x}\right)}}}

{ \displaystyle \bold \red{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - 2 e^{x} \sin{\left(x \right)} + 2 \color{red}{\int{e^{x} \cos{\left(x \right)} d x}}}}

{ \displaystyle \bold \red{=\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - 2 e^{x} \sin{\left(x \right)} + 2 \color{red}{\left(\cos{\left(x \right)} \cdot e^{x}-\int{e^{x} \cdot \left(- \sin{\left(x \right)}\right) d x}\right)}}}

{ \displaystyle{ \bold \red{=\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - 2 e^{x} \sin{\left(x \right)} + 2 \color{red}{\left(e^{x} \cos{\left(x \right)} - \int{\left(- e^{x} \sin{\left(x \right)}\right)d x}\right)}}}}

 {\displaystyle \bold \red{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - 2 e^{x} \sin{\left(x \right)} + 2 e^{x} \cos{\left(x \right)} - 2 \color{red}{\int{\left(- e^{x} \sin{\left(x \right)}\right)d x}}}}

{ \displaystyle \bold  \red{= \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - 2 e^{x} \sin{\left(x \right)} + 2 e^{x} \cos{\left(x \right)} - 2 \color{red}{\left(- \int{e^{x} \sin{\left(x \right)} d x}\right)}}}

{ \displaystyle{ \bold \red{ \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - 2 \int{e^{x} \sin{\left(x \right)} d x}}}}

 { \displaystyle{\bold \red{= \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - 2 e^{x} \sin{\left(x \right)} + 2 e^{x} \cos{\left(x \right)} + 2 \int{e^{x} \sin{\left(x \right)} d x}}}}

{ \displaystyle \bold \red{\int{e^{x} \sin{\left(x \right)} d x}}} \\  \bold \red{= \frac{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{x}}{2}}

 {\displaystyle \bold \red{\left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - 2 \color{red}{\int{e^{x} \sin{\left(x \right)} d x}}}}

 {\bold \red{= \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)} - 2 \color{red}{\left(\frac{\left(\sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{x}}{2}\right)}}}

 {\displaystyle \bold \red{\int{\left(\tan{\left(x \right)} + 1\right) e^{x} \sec{\left(x \right)} d x} = - \left(\sin{\left(x \right)} - \cos{\left(x \right)}\right) e^{x} + \left(\sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x} \tan{\left(x \right)}}}

 { \displaystyle \bold \red{\int{\left(\tan{\left(x \right)} + 1\right) e^{x} \sec{\left(x \right)} d x} = \frac{e^{x}}{\cos{\left(x \right)}}}}

 {\displaystyle \bold \red{\int{\left(\tan{\left(x \right)} + 1\right) e^{x} \sec{\left(x \right)} d x} = \frac{e^{x}}{\cos{\left(x \right)}}+C}}

Similar questions