Properties of Amalgam
vibhamalviya8:
nahi
Answers
Answered by
2
The composition of amalgam is given in the table below:
Silver40-60%Tin27-30%Copper13-30%Zinc1%
High-copper amalgam includes 40-60% silver, 27-30% tin and 13-30% copper and 1% zinc set with mercury. Indium and palladium are also included. Silver enables setting expansion and causes an increase in strength and resistance to corrosion. Tin may cause setting contraction whereas copper improves strength, minimizes corrosion and tarnish, brings down creep and brings down cases of marginal leakage. Zinc brings down the oxidation of other alloys in the metal. It has been proved that zinc-containing amalgams have a longer life when compared to non-zinc amalgams. Indium reduces creep and increases strength whereas palladium reduces corrosion and tarnish.
Tarnishing is the loss of luster from a metal or alloy surface because of the formation of a surface coating. The alloy remains unchanged and the mechanical properties also remain the same. A sulphide layer formed in the surface causes amalgam to tarnish.
Galvanic corrosion takes place when two dissimilar metals are present in a wet environment. The flow of electric current between the metals results in one of the metals getting corroded. Surface corrosion may cause a change of color of an amalgam restoration and may result in pitting. Surface corrosion fills the amalgam/tooth interface with corrosion products bringing down microleakage. Internal corrosion will result in marginal breakdown and fracture. Galvanic corrosion is promoted by an acidic environment.
Mechanical Properties
An amalgam restoration needs to be strong enough so as to resist the biting forces of occlusion. Dental amalgam has high compressive strength, which is 380MPa for low-copper amalgam and 414MPa for high-copper amalgams. However shear and tensile strengths are quite low. Hence it in essential that tooth structures support the amalgam to ensure long-term clinical success.
plz mark me brainlist plzzz.
Silver40-60%Tin27-30%Copper13-30%Zinc1%
High-copper amalgam includes 40-60% silver, 27-30% tin and 13-30% copper and 1% zinc set with mercury. Indium and palladium are also included. Silver enables setting expansion and causes an increase in strength and resistance to corrosion. Tin may cause setting contraction whereas copper improves strength, minimizes corrosion and tarnish, brings down creep and brings down cases of marginal leakage. Zinc brings down the oxidation of other alloys in the metal. It has been proved that zinc-containing amalgams have a longer life when compared to non-zinc amalgams. Indium reduces creep and increases strength whereas palladium reduces corrosion and tarnish.
Tarnishing is the loss of luster from a metal or alloy surface because of the formation of a surface coating. The alloy remains unchanged and the mechanical properties also remain the same. A sulphide layer formed in the surface causes amalgam to tarnish.
Galvanic corrosion takes place when two dissimilar metals are present in a wet environment. The flow of electric current between the metals results in one of the metals getting corroded. Surface corrosion may cause a change of color of an amalgam restoration and may result in pitting. Surface corrosion fills the amalgam/tooth interface with corrosion products bringing down microleakage. Internal corrosion will result in marginal breakdown and fracture. Galvanic corrosion is promoted by an acidic environment.
Mechanical Properties
An amalgam restoration needs to be strong enough so as to resist the biting forces of occlusion. Dental amalgam has high compressive strength, which is 380MPa for low-copper amalgam and 414MPa for high-copper amalgams. However shear and tensile strengths are quite low. Hence it in essential that tooth structures support the amalgam to ensure long-term clinical success.
plz mark me brainlist plzzz.
Answered by
2
HEY MATE !!!!
I HOPE THIS HELPS YOU
MARK AS BRAINLIST
I HOPE THIS HELPS YOU
MARK AS BRAINLIST
Attachments:
Similar questions