Protein absorption takes place in the jejunum and ileum portions of the small intestine. This process requires energy. Adenosine triphosphate is the energy source the body utilizes during protein absorption. The body uses the carrier protein transport system to absorb amino acids, unitech, or any other performance-enhancing compound.
Answers
Answer:
Protein Absorption
In adults, essentially all protein is absorbed as tripeptides, dipeptides or amino acids and this process occurs in the duodenum or proximal jejunum of the small intestine. The peptides and/or amino acids pass through the interstitial brush border by facilitative diffusion or active transport. Active transport sodium and ATP to actively transport the molecule through the cell membrane. The R group determines the type of transporter used. Once passed through the membrane, the amino acids or peptides are released into the intestinal blood stream and are transported to the liver by the hepatic (liver) portal vein. This is known as the enterohepatic circulation.
In the liver, 50-65% remain and are used to synthesize protein, nitrogen containing compounds and form purine/pyrimidine bases. In some cases, they may be converted to energy. The liver regulates the amino acid levels in the blood. The amino acids that do not stay in the liver, pass through and are transported to the rest of the body to be taken up and utilized by other cells. Most branch chain amino acids pass through the liver.
Explanation:
When you eat food the body’s digestive system breaks down the protein into the individual amino acids, which are absorbed and used by cells to build other proteins and a few other macromolecules, such as DNA. Let’s follow the specific path that proteins take down the gastrointestinal tract and into the circulatory system. Eggs are a good dietary source of protein and will be used as our example to describe the path of proteins in the processes of digestion and absorption. One egg, whether raw, hard-boiled, scrambled, or fried, supplies about six grams of protein.
From the Mouth to the Stomach
Unless you are eating it raw, the first step in egg digestion (or any other protein food) involves chewing. The teeth begin the mechanical breakdown of the large egg pieces into smaller pieces that can be swallowed. The salivary glands provide some saliva to aid swallowing and the passage of the partially mashed egg through the esophagus. The mashed egg pieces enter the stomach through the esophageal sphincter. The stomach releases gastric juices containing hydrochloric acid and the enzyme, pepsin, which initiate the breakdown of the protein. The acidity of the stomach facilitates the unfolding of the proteins that still retain part of their three-dimensional structure after cooking and helps break down the protein aggregates formed during cooking. Pepsin, which is secreted by the cells that line the stomach, dismantles the protein chains into smaller and smaller fragments. Egg proteins are large globular molecules and their chemical breakdown requires time and mixing. The powerful mechanical stomach contractions churn the partially digested protein into a more uniform mixture called chyme. Protein digestion in the stomach takes a longer time than carbohydrate digestion, but a shorter time than fat digestion. Eating a high-protein meal increases the amount of time required to sufficiently break down the meal in the stomach. Food remains in the stomach longer, making you feel full longer.