proton enters a perpendicular magnetic field of intensity ‘B’ with speed ‘v’. The
proton moves along a circular path of radius ‘R’. If a deuteron enter in to the same magnetic
field with same speed, the radius of its circular trajectory will be?
(a) R
(b) Less than R
(c) More than R
(d) cannot be said.
Answers
(b) Less than R.
I am 100% confident about this answer,
hope it helps you mark me as brainliests and follow and like my answer please.
Given: A proton enters a magnetic field on intensity B
Speed of proton = v m/s
Radius of circle traced by proton = R m
To Find: Radius of a deuteron with same speed if it enters the same magnetic field.
Solution:
- Force experienced by a particle in a magnetic field is given by:
F = qvB sinФ
where, q is charge of the particle
v is velocity of the particle
B is intensity of magnetic field
and Ф is angle made by particle while entering field
- Since proton moves in a circular path, we can say that magnetic force provides centripetal acceleration to the proton.
∴ qvB = (1) (here Ф= 90° and sin90=1)
Substituting given values in (1)
qvB = (centripetal force = )
⇒ qB =
⇒ R = (2)
- Now for a deuteron, charge is of + 1 q( q is charge on proton) and mass is twice that of a proton due to presence of a neutron.
Substituting these values in (2) we get:
⇒ R' = = 2R
Hence radius of circular path transcribed by deuteron in the same magnetic field with same intensity will be 2R.
So, option (c) more than R is correct.