Chemistry, asked by shinchdharaneesh, 9 months ago

Protons can be accelerated in particle accelerators. Calculate the wavelength (in Å)
of such accelerated proton moving at 2.85 x108 ms 1 ( the mass of proton is 1.673 X
10-27 Kg).

Answers

Answered by kikibuji
3

Answer:

The required answer is 0.00001389 angstroms

GIVEN:

  • velocity of proton ,v=2.85×10^8 m/s

  • mass of proton, m=1.673×10^-27 kg

TO FIND:

wavelength,\lambda

FORMULA:

according to de broglie equation,

\lambda=\frac{h}{mv}

where,

  • h is the planck's constant.

  • its value is ,h=6.625×10^-34 Js

SOLUTION:

\lambda =  \frac{h}{mv}  \\  \\   \frac{6.625 \times  {10}^{ - 34} }{(1.673 \times  {10}^{ - 27)}(2.85 \times  {10}^{8} ) }  \\  \\  =  \frac{6.625 \times  {10}^{ - 34} }{4.76805 \times  {10}^{ - 27 + 8} }  \\  \\  =  \frac{6.625 \times  {10}^{ - 34} }{4.76805 \times  {10}^{ - 19} }  \\  \\  = 1.389 \times  {10}^{ - 34 + 19}  \\  \\  \lambda= 1.389 \times  {10}^{ - 15} m \\  \\  = 1.389 \times  {10}^{ - 5}  \times  {10}^{ - 10} m \\  \\\lambda  = 0.00001389 \times  {10}^{ - 10}

ANSWER:

\text{wavelength<strong> </strong><strong>of</strong><strong> </strong><strong>proton</strong><strong> </strong><strong>is</strong><strong> </strong><strong>$</strong><strong>{</strong><strong>0</strong><strong>.</strong><strong>0</strong><strong>0</strong><strong>0</strong><strong>0</strong><strong>1</strong><strong>3</strong><strong>8</strong><strong>9</strong><strong> </strong><strong>A^</strong><strong>°</strong><strong>}</strong><strong>$</strong>}

ADDITONAL INFORMATION:

  • wavelength of an object is inversely proportional to its mass.

  • so a body with heavy mass will have negligible wavelength

  • hence de broglie's equation is applicable to objects of negligible mass. so their wavelength is appreciable
Similar questions
Math, 9 months ago