French, asked by CunningKing, 11 months ago


prouver que la racine 2 est irrationnelle.

Answers

Answered by AdorableMe
1

Soit √2 un nombre rationnel

Par conséquent, √2 = p / q [p et q sont dans leurs moindres termes, c'est-à-dire HCF de (p, q) = 1 et q ≠ 0

En quadrature des deux côtés, nous obtenons

p² = 2q² ... (1)

Clairement, 2 est un facteur de 2q²

⇒ 2 est un facteur de p² [puisque, 2q² = p²]

⇒ 2 est un facteur de p

Soit p = 2 m pour tout m (où m est un entier positif)

Au carré des deux côtés, nous obtenons

p² = 4 m² ... (2)

De (1) et (2), on obtient

2q² = 4m² ⇒ q² = 2m²

De toute évidence, 2 est un facteur de 2 m²

⇒ 2 est un facteur de q² [puisque q² = 2m²]

⇒ 2 est un facteur de q

Ainsi, nous voyons que p et q ont tous deux un facteur 2 commun, ce qui est une contradiction que H.C.F. de (p, q) = 1

Par conséquent, notre supposition est fausse

Par conséquent, √2 n'est pas un nombre rationnel, c'est-à-dire un nombre irrationnel.

Answered by rockstarxz
0

Answer:

root 2 is irrational as

Explanation:

The square root of 2 is "irrational" (cannot be written as a fraction) ... because if it could be written as a fraction then we would have the absurd case that the fraction would have even numbers at both top and bottom and so could always be simplified.

Similar questions