Prova that
tanA × Tan (60°+A) × Tan (120°+A) = -tan3A
**Don't Rush for Points**
Answers
Answered by
2
Step-by-step explanation:
tanA × Tan (60°+A) × Tan (120°+A)
Tan (60°+A) =(tan60+tanA)/(1-tan60tanA)
=(root3+tanA)/(1-root3tanA)
Tan (120°+A) =(tan120+tanA)/(1-tan120tanA)
=(-root3+tamA)/(1+root3tanA)
since tan120=tan(180-60)=-tan60= -root3
tanA × Tan (60°+A) × Tan (120°+A)
=tanA × (root3+tanA)/(1-root3tanA) × (-root3+tamA)/(1+root3tanA)
=tanA(tan^2A - (root3)^2)/(1^2-(root3tanA)^2)
= (tan^3A-3tanA)/(1-3tan^2A)
= -(3tanA-tan^3A)/(1-3tan^2A)
= -tan3A
Answered by
28
See above answer.......
Thanks...... for points ✌
Similar questions