Math, asked by yashashianay, 2 months ago

prove:
1/1+sin thita + 1/1-sin thita = 2 sec square thita​

Answers

Answered by singhanshika1102
2

Step-by-step explanation:

LHS=(1-sin theta+1+sin theta)/(1-sin^2theta)

=2/cos^2theta

=2sec^2 theta=RHS

Answered by Anonymous
5

To prove :-

 \tt {  :  \implies\dfrac{1}{1 +  \sin \theta} +  \dfrac{1}{1 -  \sin \theta} = 2 \sec ^{2}  \theta}

Solution :-

» Consider LHS

 \tt {  :  \implies\dfrac{1}{1 +  \sin \theta} +  \dfrac{1}{1 -  \sin \theta} }

» Taking LCM

 \tt {  :  \implies\dfrac{1 -  \sin \theta + 1 +  \sin \theta}{(1 +  \sin \theta)(1 -  \sin \theta)}  }

 \tt {  :  \implies\dfrac{2}{(1 +  \sin \theta)(1 -  \sin \theta)}  }

» Apply formula (A+B)(A-B)=-B²

 \tt {  :  \implies\dfrac{2}{(1)^{2}  -  (\sin \theta) ^{2} }  }

 \tt {  :  \implies\dfrac{2}{1  -  \sin ^{2} \theta }  }

» Apply formula 1-sin²θ = cos²θ

 \tt {  :  \implies\dfrac{2}{\cos^{2} \theta }  }

» Apply formula 1/cos²θ = sec²θ

 \tt {  :   \implies \purple{ 2 \sec ^{2} \theta   } }

» LHS = RHS

Hence proved

Similar questions