Prove :
(1 - cos θ)(1 + cos θ)(1 + cot2θ) = 1
Answers
Answered by
0
Solution :
Let A = (1 - cos θ)(1 + cos θ)(1 + cot2θ) = 1 and B = 1.
A = (1 - cos θ)(1 + cos θ)(1 + cot2θ)
A = (1 - cos2θ)(1 + cot2θ)
Because sin2θ + cos2θ = 1, we have
sin2θ = 1 - cos2θ
Then,
A = sin2θ ⋅ (1 + cot2θ)
A = sin2θ + sin2θ ⋅ cot2θ
A = sin2θ + sin2θ ⋅ (cos2θ/sin2θ)
A = sin2θ + cos2θ
A = 1
A = B (Proved)
Similar questions