Math, asked by hansika329, 9 months ago

Prove :

(1 - cos θ)(1 + cos θ)(1 + cot2θ)  =  1

Answers

Answered by Anonymous
0

Solution :

Let A = (1 - cos θ)(1 + cos θ)(1 + cot2θ) = 1 and B = 1.

A = (1 - cos θ)(1 + cos θ)(1 + cot2θ)

A = (1 - cos2θ)(1 + cot2θ)

Because sin2θ + cos2θ = 1, we have

sin2θ = 1 - cos2θ

Then,

A = sin2θ ⋅ (1 + cot2θ)

A = sin2θ + sin2θ ⋅ cot2θ

A = sin2θ + sin2θ ⋅ (cos2θ/sin2θ)

A = sin2θ + cos2θ

A = 1

A = B (Proved)

Similar questions