prove √( 1-cos A/1+cos A) = cosec A - cot A
Answers
Answered by
1
Answer:
we have to prove that
√(1-cos A/1+cos A) = cosec A - cot A
LHS:
√( 1-cos A/1+cos A)
- √(1-cos A/1+cosA×1-cos A/1-cos A)
- √[(1-cos A )^2]/1^2-cos A^2 (a+b)(a-b)=a^2-b^2 (a-b)^2=a^2+b^2-2ab
- √[(1-cos A )^2]/sin^2
- then square _roots become cancel
- 1-cos A/sin A
- 1/sin A-cos A/ sin A
- cosec A- cot A =RHS 1/sin A=cosec A
cos A/sin A= cot A
then
√ 1-cos A/1+cos A) = cosec A - cot A
Similar questions