Math, asked by FutureIB, 9 months ago

Prove: 1+cos-sin2/sin(1+cos) = cot

Answers

Answered by Anonymous
78

 \bold{\underline{To \ Proof:}}

 \sf \dfrac{1 + cos \theta -  {sin}^{2}  \theta}{sin \theta(1 + cos \theta)}  = cot \theta

 \bold{\underline{Proof:}}

LHS:

 \sf \implies \dfrac{1 + cos \theta -  {sin}^{2}  \theta}{sin \theta(1 + cos \theta)} \\  \\  \sf  {sin}^{2}  \theta = 1 -  {cos}^{2}  \theta :  \\  \sf \implies \dfrac{1 + cos \theta - (1 -  {cos}^{2}  \theta )}{sin \theta(1 + cos \theta)}  \\ \\ \sf (1 -  cos ^{2}  \theta )  =  ( {1}^{2} -  cos ^{2}  \theta ) = (1 -  cos   \theta )(1  +  cos  \theta ) : \\  \sf \implies \dfrac{1 + cos \theta - (1 -  cos  \theta )(1  +   cos  \theta )}{sin \theta(1 + cos \theta)}  \\  \\ \sf \implies \dfrac{ \cancel{1 + cos \theta}(1 - (1 -  cos  \theta ))}{sin \theta( \cancel{1 + cos \theta})}  \\  \\ \sf \implies \dfrac{1 - (1   -  cos  \theta )}{sin \theta} \\  \\ \sf \implies \dfrac{1 - 1    +   cos  \theta )}{sin \theta} \\  \\ \sf \implies \dfrac{cos  \theta }{sin \theta} \\  \\ \sf \implies cot \theta

RHS:

 \sf \implies cot \theta

 \therefore

 \bold{LHS = RHS}

 \underline{ \sf Hence  \: Proved}

Answered by Anonymous
11

Solution :-

\longrightarrow \frac{1 +  \cos -  { \sin}^{2}}{ \sin(1 +  \cos)} =  \cot \\  \\\longrightarrow  \frac{1 +  \cos -  {(1 -  \cos)}^{2} }{ \sin(1 +  \cos)} =  \cot \\  \\\longrightarrow \frac{1 +  \cos - (1 + \cos)(1 -  \cos)}{ \sin(1 +  \cos)} =  \cot \\  \\\longrightarrow\frac{1 - (1 -  \cos)}{ \sin} =  \cot \\\\\longrightarrow\frac{1 -1 + \cos}{ \sin} =  \cot \\  \\\longrightarrow  \frac{ \cos}{ \sin}  =  \cot \\  \\ \longrightarrow\cot = \cot

LHS = RHS

Hence Proved

Similar questions