Math, asked by Angolan, 7 months ago

Prove: 1+cos-sin2/sin(1+cos) = cot​

Answers

Answered by Anonymous
59

➥To Proof:

\sf \dfrac{1 + cos \theta - {sin}^{2} \theta}{sin \theta(1 + cos \theta)} = cot

\bold{\underline{Proof:}}

➥LHS:

\begin{lgathered}\sf \implies \dfrac{1 + cos \theta - {sin}^{2} \theta}{sin \theta(1 + cos \theta)} \\ \\ \sf {sin}^{2} \theta = 1 - {cos}^{2} \theta : \\ \sf \implies \dfrac{1 + cos \theta - (1 - {cos}^{2} \theta )}{sin \theta(1 + cos \theta)} \\ \\ \sf (1 - cos ^{2} \theta ) = ( {1}^{2} - cos ^{2} \theta ) = (1 - cos \theta )(1 + cos \theta ) : \\ \sf \implies \dfrac{1 + cos \theta - (1 - cos \theta )(1 + cos \theta )}{sin \theta(1 + cos \theta)} \\ \\ \sf \implies \dfrac{ \cancel{1 + cos \theta}(1 - (1 - cos \theta ))}{sin \theta( \cancel{1 + cos \theta})} \\ \\ \sf \implies \dfrac{1 - (1 - cos \theta )}{sin \theta} \\ \\ \sf \implies \dfrac{1 - 1 + cos \theta )}{sin \theta} \\ \\ \sf \implies \dfrac{cos \theta }{sin \theta} \\ \\ \sf \implies cot \theta\end{lgathered}

➥RHS:

\sf \implies cot \theta

\therefore

\bold{LHS = RHS}

Hence Proved


Anonymous: Great :)
Answered by XxDazzlingBeautyXx
108

\huge\color{red}{\underline{\underline{question\::}}}

Prove: 1+cos-sin2/sin(1+cos) = cot

\huge\color{yellow}{\underline{\underline{answer\::}}}

Refers to the attachment....

Attachments:
Similar questions