prove √1-cosA/1+cosA=cosec A-cotA
Answers
Answered by
7
Step-by-step explanation:
The answer is in attachment
:)
Attachments:
Answered by
9
First solve for (1 - Cosa)/(1+ Cosa)
(1-cosA) / (1+cosA)
Multiply with (1-cosa) on both numerator and denominator.
= [(1-cosA) (1-cosA)] / [(1+cosA) (1-cosA)]
= (1-cosA)^2 / (1-cos^2 (A))
= (1-cosA)^2 / (sin^2 (A))
= (1-cosA)^2 / (sinA)^2
= [(1-cosA) / sinA]^2
= [(1/sinA) - (cosA/sinA)]^2
= [cosecA - cotA]^2
So,
(1-cosa/1+Cosa) = (coseca - cota)^2.
Then,
√(1-cosa/1+Cosa) = coseca - cota.
Hope it helps!
Similar questions