Math, asked by SomeoneVerySpecial, 1 year ago

prove √1-cosA/1+cosA=cosec A-cotA​

Answers

Answered by trulyasian009
7

Step-by-step explanation:

The answer is in attachment

:)

Attachments:
Answered by Siddharta7
9

First solve for (1 - Cosa)/(1+ Cosa)

(1-cosA) / (1+cosA)

Multiply with (1-cosa) on both numerator and denominator.

= [(1-cosA) (1-cosA)] / [(1+cosA) (1-cosA)]

= (1-cosA)^2 / (1-cos^2 (A))

= (1-cosA)^2 / (sin^2 (A))

= (1-cosA)^2 / (sinA)^2

= [(1-cosA) / sinA]^2

= [(1/sinA) - (cosA/sinA)]^2

= [cosecA - cotA]^2

So,

(1-cosa/1+Cosa) = (coseca - cota)^2.

Then,

√(1-cosa/1+Cosa) = coseca - cota.

Hope it helps!

Similar questions