prove 1-cosA/1+cosA=(cosecA-cotA)²
please help me I will mark u as brainliest and I will follow you if the answer is right
Answers
Answered by
0
1-cosA/1+cosA=(cosecA-cotA)²
LHS = 1-cosA/1+cosA
(Divide Numerator and Denominator by sinA)
LHS = (1/sinA - cosA/sinA)/(1/sinA + cosA/sinA)
LHS = (cosecA - cotA)/(cosecA + cotA)
(Multiply Numerator and Denominator by (cosecA - cotA) )
LHS = [(cosecA - cotA)/(cosecA + cotA)] x [(cosecA - cotA)/(cosecA - cotA)]
[(cosecA + cotA)(cosecA - cotA) = cosec^2A - cot^2A]
LHS = (cosecA - cotA)^2/(cosec^2A - cot^2A)
(cosec^2A - cot^2A = 1)
LHS = (cosecA - cotA)^2/ 1
LHS = (cosecA - cotA)^2
LHS = RHS
Hence, Proved
Please Thank Me
And Mark this as Brainliest
Similar questions