Math, asked by IsD, 1 year ago

Prove
1/(cosec A-cot A) - 1/ sinA=1/sin A - 1/(cosec A - cot A)

Answers

Answered by Joshuawoskk
14
Hope the image helps.you
Attachments:

Joshuawoskk: Pls mark as brainliest and follow if the ans helps
Answered by bhumiraj1234
1

Step-by-step explanation:

 \frac{1}{cosec \: a - cot \: a}  -  \frac{1}{ \sin \: a }  =  \frac{1}{sin \: a}  -  \frac{1}{cosec \: a \:  - cot \: a}

or \:  \:  \frac{1}{cosec \: a - cot \: a}  +  \frac{1}{cosec \: a \:  + cot \: a \: }  =  \frac{1}{sin \: a }  +  \frac{1}{sin \: a}  =  \frac{2}{sin \: a \:  }

lhs =

 =  >  \frac{(cosec \: a \:  + cot \: a) + (cosec \: a \:  - cot \: a)}{cosec \: a - cot \: a} (cosec \: a \:  + cot \: a)

 =  >  \frac{2cosec \: a}{cosec {}^{2}a \:  - cot  {}^{2} a }

 =  >  \frac{2cosec \: a \: }{1}

 =  >  \frac{2}{sin \: a}

 =  > rhs

hence \: proved

Similar questions