Prove.
1/ (cosecΦ - cot Φ) - 1/ sinΦ = 1/sinΦ - 1/ (cosecΦ + cot Φ)
Answers
Answered by
4
Step-by-step explanation:
L.H.S → cot²∅/(cosec∅ - 1)
L.H.S → cot²∅/(1/sin∅ - 1)
L.H.S → (cos∅/sin∅)²/(1 - sin∅)/sin∅
L.H.S → cos²∅/sin²∅ × sin∅/(1 - sin∅)
L.H.S → cos²∅/sin∅ × 1/(1 - sin∅)
L.H.S → (1 - sin²∅)/sin∅(1 - sin∅)
L.H.S → (1 + sin∅)(1 - sin∅)/sin∅(1 - sin∅)
L.H.S → (1 + sin∅)/sin∅ = R.H.S
hope will be use
Answered by
10
Given :
- LHS :
-
Given :
- RHS :
Proof :
Taking LHS :
-
Now, taking RHS :
•°• LHS = RHS.
Similar questions