Math, asked by shettysaraswathi9922, 5 months ago

prove (1+cot theta)^2+ (1+tan theta )^2 =(cosec theta + sec theta )

Answers

Answered by RISH4BH
89

\rule{200}4

\large\underline{\purple{\sf \orange{\bigstar}Correct\:\: Question:-}}

\qquad\qquad\qquad\bf Prove \:\:that :-

\tt (1+cot\theta)^2+(1+tan\theta)^2=(csc\theta+sec\theta)^2

\large\underline{\purple{\sf \orange{\bigstar}Formulae\:and\: Identities\:Used:-}}

  • \sf (a+b)^2=a^2+b^2+2ab

  • \sf sin\theta=\dfrac{1}{cosec\theta}

  • \sf cos\theta=\dfrac{1}{sec\theta}

  • \sf sin^2\theta+cos^2\theta=1

  • \sf cosec^2\theta-cot^2\theta=1

  • \sf sec^2\theta+tan^2\theta=1

\large\underline{\purple{\sf\orange{\bigstar} Proof:-}}

{\red{\bf LHS=}}

=  \tt (1+cot\theta)^2+(1+tan\theta)^2

= \tt( 1 + tan^2\theta+2tan\theta) +(1+cot^2\theta+2cot\theta)

=\tt 1+sec^2\theta-1+2tan\theta+cosec^2\theta-1+2cot\theta+2cot\theta

=\tt sec^2\theta+cosec^2\theta+2cot\theta+2tan\theta

=\tt sec^2\theta + cosec^2\theta+2(cot\theta+tan\theta)

=\tt  sec^2\theta + cosec^2\theta+2\bigg\lgroup\dfrac{sin\theta}{cos\theta}+\dfrac{cos\theta}{sin\theta}\bigg\rgroup

=\tt sec^2\theta + cosec^2\theta+2\bigg\lgroup\dfrac{sin^2\theta+cos^2\theta}{sin\theta.cos\theta}\bigg\rgroup

=\tt sec^2\theta + cosec^2\theta+2\bigg\lgroup\dfrac{1}{sin\theta.cos\theta}\bigg\rgroup

=\tt sec^2\theta + cosec^2\theta+2(sec\theta.cosec\theta)

=\tt sec^2\theta + cosec^2\theta+2(sec\theta.cosec\theta)

=\tt (sec\theta+cosec\theta)^2

{\red{\bf = RHS}}

\Large{\boxed{\pink{\sf Hence\: Proved !}}}

\rule{200}2

\large\underline{\bf\color{blue}{\bigstar}{\blue {More\: Related\: Formulae:-}}}

\sf\red{ sin(A+B)=sinA.cosB+cosA.sinB}

\sf\red{ sin(A-B)=sinA.cosB-cosA.sinB}

\sf\red{cos(A+B)=cosA.cosB-sinA.sinB }

\sf\red{cos(A-B)=cosA.cosB+sinA.sinB }

\sf\red{ tan(A+B)=\dfrac{tanA+tanB}{1-tanA.tanB}}

\sf\red{ tan(A-B)=\dfrac{tanA-tanB}{1+tanA.tanB}}

\sf\red{ tan(A+B+C)=\dfrac{tanA+tanB+tanC-tanA.tanB.tanC}{1-tanA.tanB-tanB.tanC-tanC.tanA}}

\rule{200}4

Similar questions