Math, asked by zahoor071289, 3 months ago

prove 1+sin theta divided by cos theta+ cos theta divided by 1+sin theta =2 sec theta?​

Answers

Answered by sharanyalanka7
7

Step-by-step explanation:

= 2sec\theta

To Prove :-

 \dfrac{1 + sin \theta}{cos\theta} +  \dfrac{cos\theta}{1 + sin\theta}   = 2sec \theta

Solution :-

\dfrac{1 + sin \theta}{cos\theta} +  \dfrac{cos\theta}{1 + sin\theta}

Taking L.C.M :-

 \dfrac{(1 +  sin \theta)^{2}  }{cos\theta(1 + sin \theta)}  + \dfrac{ {cos }^{2} \theta }{cos\theta(1 + sin \theta)}

 \dfrac{(1 + sin \theta) ^{2} +  {cos}^{2} \theta  }{cos \theta +cos \theta \: sin \theta }

\dfrac{1 +  {sin}^{2} \theta + 2sin \theta +  {cos}^{2} \theta  }{cos \theta + cos \theta \: sin \theta}

\dfrac{1 +  {sin}^{2} \theta +  +  {cos}^{2} \theta  + \: 2sin \theta }{cos \theta + cos \theta \: sin \theta}

we know that :-

sin^2A + cos^2A = 1

 \dfrac{1 + 1 + 2sin \theta}{cos \theta(1 + sin \theta)}

\dfrac{2 + 2sin \theta}{cos \theta(1 + sin \theta)}

\dfrac{2( 1+ sin \theta}{cos \theta(1 + sin \theta)}

 \dfrac{2}{cos \theta}

2 \times  \dfrac{1}{cos \theta}

we know that 1/cosA = secA

2 \times sec \theta

 = 2sec \theta

Hence proved that :-

 \dfrac{1 + sin \theta}{cos\theta} +  \dfrac{cos\theta}{1 + sin\theta}   = 2sec \theta


rsagnik437: Amazing! :)
Similar questions