Math, asked by yashashianay, 30 days ago

prove:
(1 - sinA)(1 + sinA)(1 + tan Square A) = 1​

Answers

Answered by guptavirag002
1

Answer:

(1-sinA)(1+sinA)=1²-sin²A=1-sin²A=cos²A

and 1+tan²A=sec²A

So, (1-sinA)(1+sinA)(1+tan²A)=cos²A.sec²A

=(cos²A).(1/cos²A). ( cosA.secA=1)

=1

Answered by Anonymous
7

To prove :-

   \sf{ \hookrightarrow(1 -  \sin A)(1 +  \sin A)(1 +   \tan^{2}A) = 1 }

Solution :-

» Consider LHS

   \sf{ \dashrightarrow(1 -  \sin A)(1 +  \sin A)(1 +   \tan^{2}A) }

» Apply formula (1-sinA) (1+sinA) = 1-sin²A

   \sf{ \dashrightarrow(1 -  \sin  ^{2} A)(1 +   \tan^{2}A) }

» Apply formula (1-sin²A) = cos²A

   \sf{ \dashrightarrow(  \cos  ^{2} A)(1 +   \tan^{2}A) }

» Apply formula (1+tan²A) = sec²A

   \sf{ \dashrightarrow(  \cos  ^{2} A)(   \sec^{2}A) }

» Apply formula cos²A = 1/sec²A

   \sf{ \dashrightarrow \dfrac{(   \sec^{2}A)}{(   \sec^{2}A)} }

   \sf{ \dashrightarrow  \cancel\dfrac{(   \sec^{2}A)}{(   \sec^{2}A)} }

   \sf{ \dashrightarrow 1}

» LHS = RHS

Hence proved

Similar questions