Prove: (1+sina-cosa/1+sina+cosa)2 = 1-cosa/1+cosa
Answers
Answered by
3
Hi,
LHS
=
[(1+ sinA - cosA) /
(1+ sinA + cosA)]²
according to identity ,
(a+b-c)² = a²+b²+c²+2ab-2bc-2ac
=( 1 + sin²A + cos²A + 2sinA - 2sinA.cosA - 2cosA ) /
( 1 + sin²A + cos²A + 2sinA + 2sinA.cosA + 2cosA)
=( 1 + 1 + 2sinA - 2cosA - 2sinA.cosA ) /
( 1 + 1 + 2sinA + 2cosA + 2sinA.cosA)
=( 2 + 2sinA - 2cosA - 2sinA.cosA ) /
( 2 + 2sinA + 2cosA + 2sinA.cosA)
=2( 1 + sinA - cosA - sinA.cosA ) /
2( 1 + sinA + cosA + sinA.cosA)
=( 1 + sinA - cosA - sinA.cosA ) /
( 1 + sinA + cosA + sinA.cosA)
=[ 1(1 + sinA) -cosA(1 + sinA) ] /
[ 1(1 + sinA) +cosA(1 + sinA)]
=[ (1 - cosA)(1 + sinA) ] /
[ (1 + cosA)(1 + sinA)]
=( 1 - cosA ) / = RHS ,hence proved
( 1 + cosA)
LHS
=
[(1+ sinA - cosA) /
(1+ sinA + cosA)]²
according to identity ,
(a+b-c)² = a²+b²+c²+2ab-2bc-2ac
=( 1 + sin²A + cos²A + 2sinA - 2sinA.cosA - 2cosA ) /
( 1 + sin²A + cos²A + 2sinA + 2sinA.cosA + 2cosA)
=( 1 + 1 + 2sinA - 2cosA - 2sinA.cosA ) /
( 1 + 1 + 2sinA + 2cosA + 2sinA.cosA)
=( 2 + 2sinA - 2cosA - 2sinA.cosA ) /
( 2 + 2sinA + 2cosA + 2sinA.cosA)
=2( 1 + sinA - cosA - sinA.cosA ) /
2( 1 + sinA + cosA + sinA.cosA)
=( 1 + sinA - cosA - sinA.cosA ) /
( 1 + sinA + cosA + sinA.cosA)
=[ 1(1 + sinA) -cosA(1 + sinA) ] /
[ 1(1 + sinA) +cosA(1 + sinA)]
=[ (1 - cosA)(1 + sinA) ] /
[ (1 + cosA)(1 + sinA)]
=( 1 - cosA ) / = RHS ,hence proved
( 1 + cosA)
Similar questions
History,
7 months ago
Computer Science,
7 months ago
Math,
1 year ago
Biology,
1 year ago
Math,
1 year ago