Math, asked by bablisharma261985, 1 month ago

prove 1-sintheta/1+sintheta =1+2tansquare theta-2tantheta sectheta​

Answers

Answered by Anonymous
3

Question to prove :-

{ \dfrac{1 -  \sin \theta}{1 +  \sin \theta} = 1 + 2 \tan ^{2}  \theta - 2 \tan \theta . \sec \theta}

‎ ‎ ‎

Solution :-

» Considering RHS

 \sf{ : \implies 1 + 2 \tan ^{2}  \theta - 2 \tan \theta . \sec \theta}

 \sf{ : \implies 1 +  \tan ^{2}   \theta + \tan ^{2}  \theta - 2 \tan \theta . \sec \theta}

» Apply identity 1 + tan²θ= sec²θ

 \sf{ : \implies  \sec ^{2}   \theta + \tan ^{2}  \theta - 2 \tan \theta . \sec \theta}

» Apply identity A²+B²-2AB=(A-B)²

 \sf{ : \implies  (\sec   \theta  -  \tan\theta  )^{2} }

» Apply identity sec θ = 1/cos θ

 \sf{ : \implies   \bigg(\dfrac{1}{ \cos \theta}  -  \tan\theta   \bigg)^{2} }

» Apply identity tan θ = sinθ / cosθ

 \sf{ : \implies   \bigg(\dfrac{1}{ \cos \theta}  -  \dfrac{ \sin \theta}{ \cos \theta } \bigg)^{2} }

 \sf{ : \implies   \bigg(  \dfrac{ 1 - \sin \theta}{ \cos \theta } \bigg)^{2} }

 \sf{ : \implies   \dfrac{ (1 - \sin \theta) ^{2} }{ \cos ^{2}  \theta } }

 \sf{ : \implies   \dfrac{ (1 - \sin \theta) (1 -  \sin \theta) }{ \cos ^{2}  \theta } }

» Apply formula cos²θ =1-sin²θ

 \sf{ : \implies   \dfrac{ (1 - \sin \theta) (1 -  \sin \theta) }{ 1 -  \sin ^{2} \theta  } }

 \sf{ : \implies   \dfrac{ (1 - \sin \theta) (1 -  \sin \theta) }{ (1) ^{2}  -  \sin ^{2} \theta  } }

» Apply identity A²-B²=(A+B)(A-B)

 \sf{ : \implies   \dfrac{ (1 - \sin \theta) (1 -  \sin \theta) }{ (1   +   \sin \theta)(1 -  \sin \theta)  } }

 \sf{ : \implies   \dfrac{ \cancel{ (1 - \sin \theta)} (1 -  \sin \theta) }{ (1   +   \sin \theta) \cancel{(1 -  \sin \theta)}  } }

 \sf{ : \implies   \dfrac{ (1 - \sin \theta)  }{ (1   +   \sin \theta)  } }

 \sf{ : \implies   \dfrac{ 1 - \sin \theta }{ 1   +   \sin \theta  } }

LHS = RHS

Hence proved

Similar questions