Prove 1- tan square theta / cot square theta-1= tansquare theta
Answers
Answered by
0
Answer:
Step-by-step explanation:
1- tan^2 A / Cot^2 A -1 = tan^2 A
[1- (sin^2 A/ cos^2 A)]/[ (cos^2 A/ sin^2 A)-1]
[(cos^2 A- sin^2 A)/cos^2 A] / [(cos^2 A- sin^2 A)/ sin^2 A]
[cos^2 A- sin^2 A)/cos^2 A ]* [sin^2 A/(cos^2 A- sin^2 A)]
[sin^2 A/ cos^2 A]
tan^2 A
proof
Similar questions