prove (1+TanA)(1+tanB)=2,A+B=45°
Answers
Given, A + B = 45°
⇒ tan(A + B) = tan45°
⇒ (tanA + tanB)/(1 - tanAtanB) = 1
⇒ tanA + tanB = 1 - tanAtanB
⇒ tanA + tanB + tanAtanB = 1
∴ (1 + tanA)(1 + tanB)
⇒ 1 + tanB + tanA + tanAtanB
⇒ 1 + 1
⇒ 2 proved
Answer:-
Given:
A + B = 45°
Apply tan on both sides.
⟶ tan (A + B) = tan 45°
tan (A + B) = (tan A + tan B) / 1 - tan A tan B
tan 45° = 1
So,
⟶ tan A + tan B / 1 - tan A tan B = 1
⟶ tan A + tan B = 1 - tan A tan B
⟶ tan A + tan B + tan A tan B = 1
Adding 1 on both sides we get,
⟶ tan A + tan A tan B + tan B + 1 = 1 + 1
⟶ tan A ( 1 + tan B) + 1 (1 + tan B) = 2
⟶ (1 + tan B)(1 + tan A) = 2
⟶ (1 + tan A)(1 + tan B) = 2
Hence, Proved.
_________________________
Additional Information:-
sin (A + B) = sin A cos B + cos A sin B
cos (A + B) = cos A cos B - sin A sin B.
sin (A - B) = sin A cos B - cos A sin B
cos (A - B) = cos A cos B + sin A sin B.
sin 2A = 2 sin A cos A
cos 2A = cos² A - sin² A.