prove (1+TanA)(1+tanB)=2,A+B=45°
Answers
Answered by
2
Answer:
Given A+B=45
{Take tan on both the sides }
tan(A+B) = tan45
tanA+tanB/1- tanA tanB = 1
tanA+tanB=1-tanA.tanB
tanA+tanB+tanA.tanB=1
adding "1" on both sides
1+ tanA+tanB+tanA.tanB=1+1
(1 + tanA)+tanB(1+tanA).=2
(1+tanA)(1+tanB)=2 Hence proved .
Answered by
2
Given,
А + B = 45°
⇒ tаn(А + B) = tаn45°
⇒ (tаnА + tаnB)/(1 - tаnАtаnB) = 1
⇒ tаnА + tаnB = 1 - tаnАtаnB
⇒ tаnА + tаnB + tаnАtаnB = 1
∴ (1 + tаnА)(1 + tаnB)
⇒ 1 + tаnB + tаnА + tаnАtаnB
⇒ 1 + 1
⇒ 2 hence рrоved
Similar questions