Math, asked by sumit5656, 9 months ago

Prove 1/tanA+cotA=sinAcosA​

Answers

Answered by Anonymous
14

Question:-

 \frac{1}{ \tan(A)  +  \cot(A) }  =  \sin(A)  \cos(A)

Solution:-

Convert tan(A) and cot(A) in the term of sin(A) and cos(A)

Some trigonometry identities

 \tan(A)  =  \frac{ \sin(A) }{ \cos(A ) }

 \cot(A)  =  \frac{ \cos(A) }{ \sin(A) }

Now put the value ,

 \to \:  \frac{1}{ \tan(A)  +  \cot(A) }

 \to \frac{1}{ \frac{ \sin(A) }{ \cos(A)  }  +  \frac{ \cos(A) }{ \sin(A) } }

Now take a lcm ,we get

 \frac{1}{  \frac{\sin {}^{2} (A) +  \cos {}^{2} (A) }{ \sin(A)  \times  \cos(A) }    }

Use this identity

Sin²(A) + Cos²(A) = 1

 \to \frac{1}{ \frac{1}{ \sin(A) \times  \cos(A)  } }  =  \frac{1}{1}  \times  \sin(A)  \cos(A)

 \to \:  \sin(A)  \cos(A)

Hence proved

Similar questions