Math, asked by datboiii, 1 year ago

prove...................................​

Attachments:

Answers

Answered by MaheswariS
0

Answer:

\bf{(i^{17}-(\frac{1}{i})^{34})^2=2i}

Step-by-step explanation:

\text{Prove that: $(i^{17}-(\frac{1}{i})^{34})^2=2i$}

Concept used:

\boxed{i^2=-1\:\:\:\implies\:\frac{1}{i}=-i}

Now,

(i^{17}-(\frac{1}{i})^{34})^2

=(i^{16}.i^1-(-i)^{34})^2

using \boxed{i^{4n}=1,n\:is\:an\:integer}

=(1.i^1-(-i)^{34})^2

=(i-i^{34})^2

=(i-i^{32}.i^2)^2

=(i-1.(-1))^2

=(i+1)^2

using \boxed{(a+b)^2=a^2+b^2+2ab}

=i^2+1^2+2(i)(1)

=-1+1+2(i)(1)

=2i

\implies\:\bf{(i^{17}-(\frac{1}{i})^{34})^2=2i}

Answered by sanjeevravish321
0

Answer:

Step-by-step explanation:mark me i needed

The answer is here,

Given that,

= > \: \frac{a + ib}{c + id} = p + iq

We can replace the " i " as " -i ".

= > \frac{a - ib}{c - id} = p - iq

Similar questions