Math, asked by aarushi4379, 1 month ago

prove (2+ω+ω^2)^3 +(1+ω-ω^2)^8 -(1-3ω+ω^2)^4 =1, where 'ω' is omega in cube roots of unity

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\: {(2 + \omega  +  {\omega }^{2} )}^{3} +  {(1 + \omega  -  {\omega }^{2})}^{8} -  {(1 - 3\omega  +  {\omega }^{2})}^{4}

can be re-arranged as

\rm = {\bigg[2 + (\omega  +  {\omega }^{2} )\bigg]}^{3} + {\bigg[(1 + \omega ) -  {\omega }^{2} \bigg]}^{8} - {\bigg[(1 +  {\omega }^{2}) - 3\omega  \bigg]}^{4}

We know,

\red{ \boxed{ \sf{ \:1 + \omega  +  {\omega }^{2} = 0 \: }}}

So, using this, we get

\rm = {\bigg[2 + ( - 1)\bigg]}^{3} + {\bigg[ -  {\omega }^{2}  -  {\omega }^{2} \bigg]}^{8} - {\bigg[( - \omega ) - 3\omega  \bigg]}^{4}

\rm = {\bigg[2  - 1\bigg]}^{3} + {\bigg[ -2  {\omega }^{2}\bigg]}^{8} - {\bigg[ - 4\omega  \bigg]}^{4}

\rm = {\bigg[1\bigg]}^{3} + {\bigg[ 2  {\omega }^{2}\bigg]}^{8} - {\bigg[  4\omega  \bigg]}^{4}

\rm \:  =  \: 1 + 256 {\omega }^{16} - 256 {\omega }^{4}

\rm \:  =  \: 1 + 256 {\omega }^{15} \times\omega   - 256 {\omega }^{3} \times \omega

We know,

\red{ \boxed{ \sf{ \: {\omega }^{3} = 1 \: }}}

So, using this identity, we get

\rm \:  =  \: 1 + 256 \omega   - 256 \omega

\rm \:  =  \: 1

Hence, Proved

Additional Information :-

Proof of Complex cube roots of unity.

\rm :\longmapsto\:x = {\bigg[1\bigg]}^{\dfrac{1}{3} }

On cubing both sides, we get

\rm :\longmapsto\: {x}^{3} = 1

\rm :\longmapsto\: {x}^{3} - 1 = 0

\rm :\longmapsto\: ({x} - 1)( {x}^{2} + x + 1)  = 0

\bf\implies \:x = 1

or

\rm :\longmapsto\: {x}^{2} + x + 1 = 0

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{ {1}^{2} - 4 \times 1 \times 1 } }{2 \times 1}

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{ 1 - 4} }{2}

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{ - 3} }{2}

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \: i \:  \sqrt{3} }{2}

\rm :\longmapsto\:x = \dfrac{ - 1 \:  +  \: i \:  \sqrt{3} }{2}  \:  \: or \:  \: \dfrac{ - 1 \:   -   \: i \:  \sqrt{3} }{2}

\bf\implies \:x = 1, \: \dfrac{ - 1 \:  +  \: i \:  \sqrt{3} }{2} , \: \dfrac{ - 1 \:   -   \: i \:  \sqrt{3} }{2}

or

\bf\implies \:x = 1, \omega , \:  {\omega }^{2}

where,

\rm :\longmapsto\:\omega  = \dfrac{ - 1 \:  +  \: i \:  \sqrt{3} }{2}

and

\rm :\longmapsto\: {\omega }^{2} = \dfrac{ - 1 \: -   \: i \:  \sqrt{3} }{2}

So,

\rm :\longmapsto\:1 + \omega  +  {\omega }^{2}

\rm \:  =  \: 1 + \dfrac{ - 1 \:  +  \: i \:  \sqrt{3} }{2}  + \dfrac{ - 1 \:   -   \: i \:  \sqrt{3} }{2}

\rm \:  =  \: \dfrac{2 - 1 + i \sqrt{3}  - 1 - i \sqrt{3} }{2}

\rm \:  =  \: 0

Similar questions