Math, asked by wwwpavanchand143, 11 months ago

Prove √2+3√5 is an irrational number

Answers

Answered by Anonymous
24

SOLUTION:-

════════════

Given:

√2 + 3√5

To find:

══════

Irrational number.

Explanation:

═════════

Let us assume that √2+ 3√5 be a rational number.

A rational number is of the form of p/q

  • p= numerator
  • q= denominator

Where p & q are Integers and q 0.

Therefore,

 \sqrt{2}  + 3 \sqrt{5}  =  \frac{p}{q}

Squaring both sides, we get;

( \sqrt{2}  + 3 \sqrt{5} ) {}^{2}  = ( \frac{p}{q} ) {}^{2}  \\  \\ ( \sqrt{2} ) {}^{2}  + (3 \sqrt{5} ) {}^{2}  + 2 \times  \sqrt{2}  \times 3 \sqrt{5}  =  \frac{ {p}^{2} }{ {q}^{2} }  \\  \\ 2 + 9\times 5 + 6 \sqrt{10}  =  \frac{ {p}^{2} }{ {q}^{2} }  \\  \\ 2 + 45 + 6 \sqrt{10}  =  \frac{ {p}^{2} }{ {q}^{2} }  \\  \\ 47 + 6 \sqrt{10}  =  \frac{ {p}^{2} }{ {q}^{2} }  \\  \\ 6 \sqrt{10}  =  \frac{ {p}^{2} }{ {q}^{2} }  - 47 \\  \\ 6 \sqrt{10}  =  \frac{ {p}^{2}  - 47 {q}^{2} }{  {q}^{2} }  \\  \\  \sqrt{10}  =  \frac{ {p}^{2} - 47 {q}^{2}  }{6 {q}^{2} }

p² - 47q² & 6q² is an integers.

We know that √10 is an irrational number.

 \frac{ {p}^{2}  - 47 {q}^{2} }{6 {q}^{2} }  \: is \: a \: rational \: number

&

Irrational number ≠ rational number

Thus,

Our contradiction is wrong.

So,

√2 + 3√5 is an irrational number.

Similar questions