Math, asked by sanakhan14, 1 year ago

Prove :::: 2^n + 2^(n - 1) / 2 ^(n+1)-2^n = 3 /2

Answers

Answered by siddhartharao77
11
Given :  \frac{2^n + 2^{n - 1} }{ 2^{n + 1} - 2^n  }

= \ \textgreater \   \frac{2^n + 2^n *  2^{-1} }{2^n * 2 - 2^n}

= \ \textgreater \   \frac{2^n + 2^n *  \frac{1}{2} }{2^n(2 - 1)}

= \ \textgreater \   \frac{2^n +  \frac{2^n}{2} }{2^n(2 - 1)}

= \ \textgreater \   \frac{2^n(1 +  \frac{1}{2} )}{2^n(2 - 1)}

= \ \textgreater \   \frac{ \frac{3}{2} }{1}

= > 3/2.


Hope this helps!

siddhartharao77: Wait..I will edit..
siddhartharao77: i have edited my answer..refresh the page!
siddhartharao77: :-)
siddhartharao77: Now see
Similar questions