Prove (2cos12°cos6°)/(1+2sin12°cos6°)=tan54°
Answers
Answered by
3
Answer:
54°-9°=45°
or, 54°=45°+9°
or, tan54°=tan(45°+9°)
or, tan54°=tan45°+tan9°/1-tan45°tan9°
or, tan54°=1+tan9°/1-tan9° [∵, tan45°=1]
or, tan54°=(1+sin9°/cos9°)/(1-sin9°/cos9°)
or, tan54°={(cos9°+sin9°)/cos9°}/{(cos9°-sin9°)/cos9°}
or, tan54°=cos9°+sin9°/cos9°-sin9° (Proved)
Answered by
0
Answer:
Step-by-step explanation:
54°-9°=45°
or, 54°=45°+9°
or, tan54°=tan(45°+9°)
or, tan54°=tan45°+tan9°/1-tan45°tan9°
or, tan54°=1+tan9°/1-tan9° [∵, tan45°=1]
or, tan54°=(1+sin9°/cos9°)/(1-sin9°/cos9°)
or, tan54°={(cos9°+sin9°)/cos9°}/{(cos9°-sin9°)/cos9°}
or, tan54°=cos9°+sin9°/cos9°-sin9°
Similar questions